| Week
No. | Week
of | Lecture
reference
(Griffiths) | Торіс | Problem
Set No. | Due 5 PM
on | |-------------|------------|--|---|--------------------|----------------| | 1 | 20-Jan | 1.1.5, 1.3.2-1.3.6
1.4-1.6
1.4-1.6 | Vector and tensor transformations, fundamental theorems
Curvilinear coordinates, Dirac delta function,
theory of vector fields | | | | 2 | 27-Jan | 2.1-2.2.3
2.2.4-2.3
2.4, 2.5.1 | Electrostatic fields, Gauss's law Electrostatic potential and boundary conditions Electrostatic work and energy, conductors | 1 | 31-Jan | | 3 | 3-Feb | 3.1.1-3.1.4
3.1.5, 3.2.1-3.2.2
3.3.1 | Laplace's and Poisson's equation, simple and relaxation solutions Uniqueness of solution, method of images Separation of variables in Cartesian coordinates | 2 | 7-Feb | | 4 | 10-Feb | 3.4.2, 3.4.4
4.1-4.2.1
4.3-4.4.1 | Ideal electric dipole and its field
Forces and torques on electric dipoles; polarization
Gauss's law in dielectrics, D , linear dielectrics | 3 | 14-Feb | | 5 | 17-Feb | 4.4.3-4.4.4
5.1.1-5.1.2
5.1.3 | Energy in dielectrics, forces on dielectrics
Lorentz force law, particle trajectories in static fields
Current, forces on wires, current densities; charge conservation | 4 | 21-Feb | | 6 | 24-Feb | 5.2, 5.3.1-5.3.2
5.3.2
(27-Feb) | Biot-Savart law, divergence of B Ampere's law MIDTERM 1 (covers PS 1-4) | | | | 7 | 3-Mar | 5.3.3-5.3.4
5.4.1-5.4.2
5.4.3 | Applications of Ampere's law, static Maxwell equations
Vector potential, magnetostatic boundary conditions
Ideal magnetic dipole and its field | 5 | 7-Mar | | 8 | 10-Mar | 6.1.1-6.1.2, 6.1.4
6.3, 6.4.1
6.4.2 | Forces and torques on magnetic dipoles; magnetization
Ampere's law in magnetic materials, H , linear magnetic media
Ferromagnetism | 6 | 14-Mar | | 9 | 17-Mar | 7.1
7.2.1-7.2.2
7.2.3-7.2.4 | Ohm's law, EMF
Faraday's law
Energy in magnetic fields, inductance | 7 | 21-Mar | | | 24-Mar | | SPRING RECESS | | | | 10 | 31-Mar | 7.3.1-7.3.3
7.3.5-7.3.6
10.1 | Maxwell's equations in free space Maxwell's equations in matter, boundary conditions Maxwell's equations for potentials; gauge transformations | 8 | 4-Apr | | 11 | 7-Apr | 8.1.1
8.1.2
(10-Apr) | Continuity equation Poynting's theorem MIDTERM 2 (covers PS 1-8) | | | | 12 | 14-Apr | 9.1.1-9.1.2
9.2
9.3.1-9.3.2 | Wave equation in one dimension, general solution, sinusoidal waves EM waves in vacuum, energy and momentum EM waves in a linear insulator, reflection at normal incidence | 9 | 18-Apr | | 13 | 21-Apr | 11.1.1-11.1.2
11.1.1-11.1.2
9.1.4 | EM fields of an oscillating electric dipole
Electric dipole radiation and power
Polarization and angular momentum of EM waves | 10 | 25-Apr | | 14 | 28-Apr | 9.4.1-9.4.2
9.5.1, 9.5.3 | Jones vectors: how to control polarization EM waves in a conductor, reflection at normal incidence EM waves in a coaxial cable | 11 | 2-May | | 15 | 5-May |

 | Interference and coherence of >1 dipole radiator Radiation pattern from >1 dipole Connection to diffraction (Babinet) | 12 | 9-May | | 16 | 12-May |
(13-May) | Review INSTRUCTION ENDS | | , | | 17 | 19-May |
(20-May) | 110A FINAL EXAM (Group 9, 8-11 AM) (covers PS 1-12) | | |